In_class exercise 5

Geograpgically Weighted Logistic Regression (GWLR) and Application

Overview

In this lesson, you will learn the basic concepts and methods of logistic regression specially designed for geographical data. Upon completion of this lesson, you will able to:

  • explain the similarities and differences between Logistic Regression (LR) algorithm versus geographical weighted Logistic Regression (GWLR) algorithm.

  • calibrate predictive models by using appropriate Geographically Weighted Logistic Regression algorithm for geographical data.

pacman::p_load(sf, tidyverse, funModeling, blorr, corrplot, ggpubr, spdep, GWmodel, tmap, skimr, caret)

Importing data

Importing water point data

First, we are going to import 2 set of data

wp <- readRDS("rds/osun_wp_sf.rds")
glimpse(wp)
Rows: 4,760
Columns: 75
$ row_id                     <dbl> 70578, 66401, 65607, 68989, 67708, 66419, 6…
$ source                     <chr> "Federal Ministry of Water Resources, Niger…
$ lat_deg                    <dbl> 7.759448, 8.031187, 7.891137, 7.509588, 7.4…
$ lon_deg                    <dbl> 4.563998, 4.637400, 4.713438, 4.265002, 4.3…
$ report_date                <chr> "05/11/2015 12:00:00 AM", "04/30/2015 12:00…
$ status_id                  <chr> "No", "No", "No", "No", "Yes", "Yes", "Yes"…
$ water_source_clean         <chr> "Borehole", "Borehole", "Borehole", "Boreho…
$ water_source_category      <chr> "Well", "Well", "Well", "Well", "Well", "We…
$ water_tech_clean           <chr> "Mechanized Pump", "Mechanized Pump", "Mech…
$ water_tech_category        <chr> "Mechanized Pump", "Mechanized Pump", "Mech…
$ facility_type              <chr> "Improved", "Improved", "Improved", "Improv…
$ clean_country_name         <chr> "Nigeria", "Nigeria", "Nigeria", "Nigeria",…
$ clean_adm1                 <chr> "Osun", "Osun", "Osun", "Osun", "Osun", "Os…
$ clean_adm2                 <chr> "Osogbo", "Odo-Otin", "Boripe", "Ayedire", …
$ clean_adm3                 <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ clean_adm4                 <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ install_year               <dbl> NA, 2004, 2006, 2014, 2011, 2007, 2007, 200…
$ installer                  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ rehab_year                 <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ rehabilitator              <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ management_clean           <chr> NA, NA, NA, NA, NA, "Community Management",…
$ status_clean               <chr> "Abandoned/Decommissioned", "Abandoned/Deco…
$ pay                        <chr> "No", "No", "No", "No", "No", "No", "No", "…
$ fecal_coliform_presence    <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ fecal_coliform_value       <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ subjective_quality         <chr> "Acceptable quality", "Acceptable quality",…
$ activity_id                <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ scheme_id                  <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ wpdx_id                    <chr> "6FV6QH57+QHH", "6FW62JJP+FXC", "6FV6VPR7+F…
$ notes                      <chr> "COSTAIN  area, Osogbo", "Igbaye", "Araromi…
$ orig_lnk                   <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ photo_lnk                  <chr> "https://akvoflow-55.s3.amazonaws.com/image…
$ country_id                 <chr> "NG", "NG", "NG", "NG", "NG", "NG", "NG", "…
$ data_lnk                   <chr> "https://catalog.waterpointdata.org/dataset…
$ distance_to_primary_road   <dbl> 167.82235, 4133.71306, 6559.76182, 8260.715…
$ distance_to_secondary_road <dbl> 838.9185, 1162.6246, 4625.0324, 5854.5731, …
$ distance_to_tertiary_road  <dbl> 1181.107236, 9.012647, 58.314987, 2013.6515…
$ distance_to_city           <dbl> 2449.2931, 16704.1923, 21516.8495, 31765.68…
$ distance_to_town           <dbl> 9463.295, 5176.899, 8589.103, 16386.459, 23…
$ water_point_history        <chr> "{\"2015-05-11\": {\"photo_lnk\": \"https:/…
$ rehab_priority             <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ water_point_population     <dbl> NA, NA, NA, NA, 0, 508, 162, 362, 3562, 217…
$ local_population_1km       <dbl> NA, NA, NA, NA, 70, 647, 449, 1611, 7199, 2…
$ crucialness_score          <dbl> NA, NA, NA, NA, NA, 0.785162287, 0.36080178…
$ pressure_score             <dbl> NA, NA, NA, NA, NA, 1.69333333, 0.54000000,…
$ usage_capacity             <dbl> 1000, 1000, 1000, 300, 1000, 300, 300, 300,…
$ is_urban                   <lgl> TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALS…
$ days_since_report          <dbl> 2689, 2700, 2688, 2693, 2701, 2692, 2681, 2…
$ staleness_score            <dbl> 42.84384, 42.69554, 42.85735, 42.78986, 42.…
$ latest_record              <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, T…
$ location_id                <dbl> 239556, 230405, 240009, 236400, 229231, 237…
$ cluster_size               <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2…
$ clean_country_id           <chr> "NGA", "NGA", "NGA", "NGA", "NGA", "NGA", "…
$ country_name               <chr> "Nigeria", "Nigeria", "Nigeria", "Nigeria",…
$ water_source               <chr> "Improved Tube well or borehole", "Improved…
$ water_tech                 <chr> "Motorised", "Motorised", "Motorised", "yet…
$ status                     <lgl> FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRU…
$ adm2                       <chr> "Osogbo", "Odo-Otin", "Boripe", "Aiyedire",…
$ adm3                       <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ management                 <chr> NA, NA, NA, NA, NA, "Community Management",…
$ adm1                       <chr> "Osun", "Osun", "Osun", "Osun", "Osun", "Os…
$ `New Georeferenced Column` <chr> "POINT (4.5639983 7.7594483)", "POINT (4.63…
$ lat_deg_original           <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ lat_lon_deg                <chr> "(7.7594483°, 4.5639983°)", "(8.0311867°, 4…
$ lon_deg_original           <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ public_data_source         <chr> "https://catalog.waterpointdata.org/datafil…
$ converted                  <chr> "#status_id, #water_source, #pay, #status, …
$ count                      <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ created_timestamp          <chr> "06/30/2020 12:56:07 PM", "06/30/2020 12:56…
$ updated_timestamp          <chr> "06/30/2020 12:56:07 PM", "06/30/2020 12:56…
$ Geometry                   <POINT [m]> POINT (236239.7 417577), POINT (24463…
$ ADM2_EN                    <chr> "Osogbo", "Odo-Otin", "Boripe", "Aiyedire",…
$ ADM2_PCODE                 <chr> "NG030030", "NG030025", "NG030006", "NG0300…
$ ADM1_EN                    <chr> "Osun", "Osun", "Osun", "Osun", "Osun", "Os…
$ ADM1_PCODE                 <chr> "NG030", "NG030", "NG030", "NG030", "NG030"…
osun <- readRDS("rds/Osun.rds")
glimpse(osun)
Rows: 30
Columns: 5
$ ADM2_EN    <chr> "Aiyedade", "Aiyedire", "Atakumosa East", "Atakumosa West",…
$ ADM2_PCODE <chr> "NG030001", "NG030002", "NG030003", "NG030004", "NG030005",…
$ ADM1_EN    <chr> "Osun", "Osun", "Osun", "Osun", "Osun", "Osun", "Osun", "Os…
$ ADM1_PCODE <chr> "NG030", "NG030", "NG030", "NG030", "NG030", "NG030", "NG03…
$ geometry   <MULTIPOLYGON [m]> MULTIPOLYGON (((213526.6 34..., MULTIPOLYGON (…
tm_shape(osun) +
  tm_polygons()+
tm_shape(wp)+
  tm_dots()

Exploratory Data Analysis

freq(wp, input='status')
Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
of ggplot2 3.3.4.
ℹ The deprecated feature was likely used in the funModeling package.
  Please report the issue at <https://github.com/pablo14/funModeling/issues>.

  status frequency percentage cumulative_perc
1   TRUE      2642       55.5            55.5
2  FALSE      2118       44.5           100.0
tmap_mode("view")
tmap mode set to interactive viewing

tmap mode set to interactive viewing

tm_shape(osun) +
  tm_polygons(alpha=0.4) +
tm_shape(wp) +
  tm_dots(col="status",
          alpha=0.6) +
  tm_view(set.zoom.limits = c(9, 12))

the skim() function of the skimr package to do quick exploratory data analysis. For categorical variables, it shows the number of the missing values and unique variable view. For binary variables, shows the number of missing values and gives a frequency count. For numercial fields, on top of missing values, it also shows some summary statistics like mean, standard deviation.

skim(wp)
Warning: Couldn't find skimmers for class: sfc_POINT, sfc; No user-defined `sfl`
provided. Falling back to `character`.
Data summary
Name wp
Number of rows 4760
Number of columns 75
_______________________
Column type frequency:
character 47
logical 5
numeric 23
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
source 0 1.00 5 44 0 2 0
report_date 0 1.00 22 22 0 42 0
status_id 0 1.00 2 7 0 3 0
water_source_clean 0 1.00 8 22 0 3 0
water_source_category 0 1.00 4 6 0 2 0
water_tech_clean 24 0.99 9 23 0 3 0
water_tech_category 24 0.99 9 15 0 2 0
facility_type 0 1.00 8 8 0 1 0
clean_country_name 0 1.00 7 7 0 1 0
clean_adm1 0 1.00 3 5 0 5 0
clean_adm2 0 1.00 3 14 0 35 0
clean_adm3 4760 0.00 NA NA 0 0 0
clean_adm4 4760 0.00 NA NA 0 0 0
installer 4760 0.00 NA NA 0 0 0
management_clean 1573 0.67 5 37 0 7 0
status_clean 0 1.00 9 32 0 7 0
pay 0 1.00 2 39 0 7 0
fecal_coliform_presence 4760 0.00 NA NA 0 0 0
subjective_quality 0 1.00 18 20 0 4 0
activity_id 4757 0.00 36 36 0 3 0
scheme_id 4760 0.00 NA NA 0 0 0
wpdx_id 0 1.00 12 12 0 4760 0
notes 0 1.00 2 96 0 3502 0
orig_lnk 4757 0.00 84 84 0 1 0
photo_lnk 41 0.99 84 84 0 4719 0
country_id 0 1.00 2 2 0 1 0
data_lnk 0 1.00 79 96 0 2 0
water_point_history 0 1.00 142 834 0 4750 0
clean_country_id 0 1.00 3 3 0 1 0
country_name 0 1.00 7 7 0 1 0
water_source 0 1.00 8 30 0 4 0
water_tech 0 1.00 5 37 0 20 0
adm2 0 1.00 3 14 0 33 0
adm3 4760 0.00 NA NA 0 0 0
management 1573 0.67 5 47 0 7 0
adm1 0 1.00 4 5 0 4 0
New Georeferenced Column 0 1.00 16 35 0 4760 0
lat_lon_deg 0 1.00 13 32 0 4760 0
public_data_source 0 1.00 84 102 0 2 0
converted 0 1.00 53 53 0 1 0
created_timestamp 0 1.00 22 22 0 2 0
updated_timestamp 0 1.00 22 22 0 2 0
Geometry 0 1.00 33 37 0 4760 0
ADM2_EN 0 1.00 3 14 0 30 0
ADM2_PCODE 0 1.00 8 8 0 30 0
ADM1_EN 0 1.00 4 4 0 1 0
ADM1_PCODE 0 1.00 5 5 0 1 0

Variable type: logical

skim_variable n_missing complete_rate mean count
rehab_year 4760 0 NaN :
rehabilitator 4760 0 NaN :
is_urban 0 1 0.39 FAL: 2884, TRU: 1876
latest_record 0 1 1.00 TRU: 4760
status 0 1 0.56 TRU: 2642, FAL: 2118

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
row_id 0 1.00 68550.48 10216.94 49601.00 66874.75 68244.50 69562.25 471319.00 ▇▁▁▁▁
lat_deg 0 1.00 7.68 0.22 7.06 7.51 7.71 7.88 8.06 ▁▂▇▇▇
lon_deg 0 1.00 4.54 0.21 4.08 4.36 4.56 4.71 5.06 ▃▆▇▇▂
install_year 1144 0.76 2008.63 6.04 1917.00 2006.00 2010.00 2013.00 2015.00 ▁▁▁▁▇
fecal_coliform_value 4760 0.00 NaN NA NA NA NA NA NA
distance_to_primary_road 0 1.00 5021.53 5648.34 0.01 719.36 2972.78 7314.73 26909.86 ▇▂▁▁▁
distance_to_secondary_road 0 1.00 3750.47 3938.63 0.15 460.90 2554.25 5791.94 19559.48 ▇▃▁▁▁
distance_to_tertiary_road 0 1.00 1259.28 1680.04 0.02 121.25 521.77 1834.42 10966.27 ▇▂▁▁▁
distance_to_city 0 1.00 16663.99 10960.82 53.05 7930.75 15030.41 24255.75 47934.34 ▇▇▆▃▁
distance_to_town 0 1.00 16726.59 12452.65 30.00 6876.92 12204.53 27739.46 44020.64 ▇▅▃▃▂
rehab_priority 2654 0.44 489.33 1658.81 0.00 7.00 91.50 376.25 29697.00 ▇▁▁▁▁
water_point_population 4 1.00 513.58 1458.92 0.00 14.00 119.00 433.25 29697.00 ▇▁▁▁▁
local_population_1km 4 1.00 2727.16 4189.46 0.00 176.00 1032.00 3717.00 36118.00 ▇▁▁▁▁
crucialness_score 798 0.83 0.26 0.28 0.00 0.07 0.15 0.35 1.00 ▇▃▁▁▁
pressure_score 798 0.83 1.46 4.16 0.00 0.12 0.41 1.24 93.69 ▇▁▁▁▁
usage_capacity 0 1.00 560.74 338.46 300.00 300.00 300.00 1000.00 1000.00 ▇▁▁▁▅
days_since_report 0 1.00 2692.69 41.92 1483.00 2688.00 2693.00 2700.00 4645.00 ▁▇▁▁▁
staleness_score 0 1.00 42.80 0.58 23.13 42.70 42.79 42.86 62.66 ▁▁▇▁▁
location_id 0 1.00 235865.49 6657.60 23741.00 230638.75 236199.50 240061.25 267454.00 ▁▁▁▁▇
cluster_size 0 1.00 1.05 0.25 1.00 1.00 1.00 1.00 4.00 ▇▁▁▁▁
lat_deg_original 4760 0.00 NaN NA NA NA NA NA NA
lon_deg_original 4760 0.00 NaN NA NA NA NA NA NA
count 0 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 ▁▁▇▁▁
expvars <- c("status","distance_to_primary_road", "distance_to_secondary_road",
             "distance_to_tertiary_road", "distance_to_city", 
             "distance_to_town", "water_point_population",
             "local_population_1km", "usage_capacity", "is_urban",
             "water_source_clean")

wp_clean <- wp %>%
  filter(!if_any(expvars, ~is.na(.x)))%>%
  mutate(usage_capacity = as.factor(usage_capacity))
Warning: Using an external vector in selections was deprecated in tidyselect 1.1.0.
ℹ Please use `all_of()` or `any_of()` instead.
  # Was:
  data %>% select(expvars)

  # Now:
  data %>% select(all_of(expvars))

See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.

Next, we need to check for multicollinearity. As we cannot o that on the data with geometry information, we need to strip the geometry information with st_set_geometry(NULL). We can then plot the correlation matrix.

wp_vars <- wp_clean %>%
  select(expvars)%>%
  st_set_geometry(NULL)
vars.cor = cor(wp_vars[2:7])
corrplot.mixed(vars.cor,
               lower="ellipse",
               upper="number",
               tl.pos = "lt",
               diag="l",
               tl.col = "black")

There are no variables that display multi-collinearity so we do not need to drop any. Now we can proceed to do a logistic regression. The first line of the code below creates the regression formula from the list of variables of interest using the paste() function. This method of creating a formula from lists is convenient when we have many explanatory variables so we don’t need to keep typing it out. We can then input the formula into the glm() function to perform the regression.

fm <- as.formula(paste("status ~", 
                       paste(expvars[2:11], collapse="+")))

model <- glm(fm, 
             data=wp_clean, 
             family=binomial(link="logit"))

The blr_regress() function of the blorr package creates a neat logistic regression report.

blr_regress(model)
                             Model Overview                              
------------------------------------------------------------------------
Data Set    Resp Var    Obs.    Df. Model    Df. Residual    Convergence 
------------------------------------------------------------------------
  data       status     4756      4755           4744           TRUE     
------------------------------------------------------------------------

                    Response Summary                     
--------------------------------------------------------
Outcome        Frequency        Outcome        Frequency 
--------------------------------------------------------
   0             2114              1             2642    
--------------------------------------------------------

                                 Maximum Likelihood Estimates                                   
-----------------------------------------------------------------------------------------------
               Parameter                    DF    Estimate    Std. Error    z value     Pr(>|z|) 
-----------------------------------------------------------------------------------------------
              (Intercept)                   1      0.3887        0.1124      3.4588       5e-04 
        distance_to_primary_road            1      0.0000        0.0000     -0.7153      0.4744 
       distance_to_secondary_road           1      0.0000        0.0000     -0.5530      0.5802 
       distance_to_tertiary_road            1      1e-04         0.0000      4.6708      0.0000 
            distance_to_city                1      0.0000        0.0000     -4.7574      0.0000 
            distance_to_town                1      0.0000        0.0000     -4.9170      0.0000 
         water_point_population             1      -5e-04        0.0000    -11.3686      0.0000 
          local_population_1km              1      3e-04         0.0000     19.2953      0.0000 
           usage_capacity1000               1     -0.6230        0.0697     -8.9366      0.0000 
              is_urbanTRUE                  1     -0.2971        0.0819     -3.6294       3e-04 
water_source_cleanProtected Shallow Well    1      0.5040        0.0857      5.8783      0.0000 
   water_source_cleanProtected Spring       1      1.2882        0.4388      2.9359      0.0033 
-----------------------------------------------------------------------------------------------

 Association of Predicted Probabilities and Observed Responses  
---------------------------------------------------------------
% Concordant          0.7347          Somers' D        0.4693   
% Discordant          0.2653          Gamma            0.4693   
% Tied                0.0000          Tau-a            0.2318   
Pairs                5585188          c                0.7347   
---------------------------------------------------------------

There are 2 variables which are not statistically significant (p-value>0.05). They are not good predictors and should be considered. distance_to_tertiary_road, distance_to_city, distance_to_town and local_population_1km have positive coefficients, indicating that larger values correspond with higher possibility of a waterpoint being functional.

blr_confusion_matrix(model, cutoff=0.5)
Confusion Matrix and Statistics 

          Reference
Prediction FALSE TRUE
         0  1301  738
         1   813 1904

                Accuracy : 0.6739 
     No Information Rate : 0.4445 

                   Kappa : 0.3373 

McNemars's Test P-Value  : 0.0602 

             Sensitivity : 0.7207 
             Specificity : 0.6154 
          Pos Pred Value : 0.7008 
          Neg Pred Value : 0.6381 
              Prevalence : 0.5555 
          Detection Rate : 0.4003 
    Detection Prevalence : 0.5713 
       Balanced Accuracy : 0.6680 
               Precision : 0.7008 
                  Recall : 0.7207 

        'Positive' Class : 1

The overall accuracy of the model is 67%. The model is better at predicting positives than negatives as the true positive rate (sensitivity) is higher than the true negative rate (specificity).

Geographically Weighted Logistic Regression

wp_clean_sp <- wp_clean %>%
  select(expvars) %>%
  as_Spatial()

wp_clean_sp
class       : SpatialPointsDataFrame 
features    : 4756 
extent      : 182502.4, 290751, 340054.1, 450905.3  (xmin, xmax, ymin, ymax)
crs         : +proj=tmerc +lat_0=4 +lon_0=8.5 +k=0.99975 +x_0=670553.98 +y_0=0 +a=6378249.145 +rf=293.465 +towgs84=-92,-93,122,0,0,0,0 +units=m +no_defs 
variables   : 11
names       : status, distance_to_primary_road, distance_to_secondary_road, distance_to_tertiary_road, distance_to_city, distance_to_town, water_point_population, local_population_1km, usage_capacity, is_urban, water_source_clean 
min values  :      0,        0.014461356813335,          0.152195902540837,         0.017815121653488, 53.0461399623541, 30.0019777713073,                      0,                    0,           1000,        0,           Borehole 
max values  :      1,         26909.8616132094,           19559.4793799085,          10966.2705628969,  47934.343603562, 44020.6393368124,                  29697,                36118,            300,        1,   Protected Spring 

The next step is to create the spatial weights matrix. We need to use a distance-based spatial weights matrix to conduct the logistic regression. The following code chunk uses AIC to recommend the maximum distance to consider neighbours for a fixed distance matrix.

bw.fixed <- bw.ggwr(fm, 
                    data=wp_clean_sp,
                    family = "binomial",
                    approach= "AIC",
                    kernel = "gaussian",
                    adaptive = FALSE,
                    longlat= FALSE)
Take a cup of tea and have a break, it will take a few minutes.
          -----A kind suggestion from GWmodel development group
 Iteration    Log-Likelihood:(With bandwidth:  95768.67 )
=========================
       0        -2889 
       1        -2836 
       2        -2830 
       3        -2829 
       4        -2829 
       5        -2829 
Fixed bandwidth: 95768.67 AICc value: 5684.357 
 Iteration    Log-Likelihood:(With bandwidth:  59200.13 )
=========================
       0        -2875 
       1        -2818 
       2        -2810 
       3        -2808 
       4        -2808 
       5        -2808 
Fixed bandwidth: 59200.13 AICc value: 5646.785 
 Iteration    Log-Likelihood:(With bandwidth:  36599.53 )
=========================
       0        -2847 
       1        -2781 
       2        -2768 
       3        -2765 
       4        -2765 
       5        -2765 
       6        -2765 
Fixed bandwidth: 36599.53 AICc value: 5575.148 
 Iteration    Log-Likelihood:(With bandwidth:  22631.59 )
=========================
       0        -2798 
       1        -2719 
       2        -2698 
       3        -2693 
       4        -2693 
       5        -2693 
       6        -2693 
Fixed bandwidth: 22631.59 AICc value: 5466.883 
 Iteration    Log-Likelihood:(With bandwidth:  13998.93 )
=========================
       0        -2720 
       1        -2622 
       2        -2590 
       3        -2581 
       4        -2580 
       5        -2580 
       6        -2580 
       7        -2580 
Fixed bandwidth: 13998.93 AICc value: 5324.578 
 Iteration    Log-Likelihood:(With bandwidth:  8663.649 )
=========================
       0        -2601 
       1        -2476 
       2        -2431 
       3        -2419 
       4        -2417 
       5        -2417 
       6        -2417 
       7        -2417 
Fixed bandwidth: 8663.649 AICc value: 5163.61 
 Iteration    Log-Likelihood:(With bandwidth:  5366.266 )
=========================
       0        -2436 
       1        -2268 
       2        -2194 
       3        -2167 
       4        -2161 
       5        -2161 
       6        -2161 
       7        -2161 
       8        -2161 
       9        -2161 
Fixed bandwidth: 5366.266 AICc value: 4990.587 
 Iteration    Log-Likelihood:(With bandwidth:  3328.371 )
=========================
       0        -2157 
       1        -1922 
       2        -1802 
       3        -1739 
       4        -1713 
       5        -1713 
Fixed bandwidth: 3328.371 AICc value: 4798.288 
 Iteration    Log-Likelihood:(With bandwidth:  2068.882 )
=========================
       0        -1751 
       1        -1421 
       2        -1238 
       3        -1133 
       4        -1084 
       5        -1084 
Fixed bandwidth: 2068.882 AICc value: 4837.017 
 Iteration    Log-Likelihood:(With bandwidth:  4106.777 )
=========================
       0        -2297 
       1        -2095 
       2        -1997 
       3        -1951 
       4        -1938 
       5        -1936 
       6        -1936 
       7        -1936 
       8        -1936 
Fixed bandwidth: 4106.777 AICc value: 4873.161 
 Iteration    Log-Likelihood:(With bandwidth:  2847.289 )
=========================
       0        -2036 
       1        -1771 
       2        -1633 
       3        -1558 
       4        -1525 
       5        -1525 
Fixed bandwidth: 2847.289 AICc value: 4768.192 
 Iteration    Log-Likelihood:(With bandwidth:  2549.964 )
=========================
       0        -1941 
       1        -1655 
       2        -1503 
       3        -1417 
       4        -1378 
       5        -1378 
Fixed bandwidth: 2549.964 AICc value: 4762.212 
 Iteration    Log-Likelihood:(With bandwidth:  2366.207 )
=========================
       0        -1874 
       1        -1573 
       2        -1410 
       3        -1316 
       4        -1274 
       5        -1274 
Fixed bandwidth: 2366.207 AICc value: 4773.081 
 Iteration    Log-Likelihood:(With bandwidth:  2663.532 )
=========================
       0        -1979 
       1        -1702 
       2        -1555 
       3        -1474 
       4        -1438 
       5        -1438 
Fixed bandwidth: 2663.532 AICc value: 4762.568 
 Iteration    Log-Likelihood:(With bandwidth:  2479.775 )
=========================
       0        -1917 
       1        -1625 
       2        -1468 
       3        -1380 
       4        -1339 
       5        -1339 
Fixed bandwidth: 2479.775 AICc value: 4764.294 
 Iteration    Log-Likelihood:(With bandwidth:  2593.343 )
=========================
       0        -1956 
       1        -1674 
       2        -1523 
       3        -1439 
       4        -1401 
       5        -1401 
Fixed bandwidth: 2593.343 AICc value: 4761.813 
 Iteration    Log-Likelihood:(With bandwidth:  2620.153 )
=========================
       0        -1965 
       1        -1685 
       2        -1536 
       3        -1453 
       4        -1415 
       5        -1415 
Fixed bandwidth: 2620.153 AICc value: 4761.89 
 Iteration    Log-Likelihood:(With bandwidth:  2576.774 )
=========================
       0        -1950 
       1        -1667 
       2        -1515 
       3        -1431 
       4        -1393 
       5        -1393 
Fixed bandwidth: 2576.774 AICc value: 4761.889 
 Iteration    Log-Likelihood:(With bandwidth:  2603.584 )
=========================
       0        -1960 
       1        -1678 
       2        -1528 
       3        -1445 
       4        -1407 
       5        -1407 
Fixed bandwidth: 2603.584 AICc value: 4761.813 
 Iteration    Log-Likelihood:(With bandwidth:  2609.913 )
=========================
       0        -1962 
       1        -1680 
       2        -1531 
       3        -1448 
       4        -1410 
       5        -1410 
Fixed bandwidth: 2609.913 AICc value: 4761.831 
 Iteration    Log-Likelihood:(With bandwidth:  2599.672 )
=========================
       0        -1958 
       1        -1676 
       2        -1526 
       3        -1443 
       4        -1405 
       5        -1405 
Fixed bandwidth: 2599.672 AICc value: 4761.809 
 Iteration    Log-Likelihood:(With bandwidth:  2597.255 )
=========================
       0        -1957 
       1        -1675 
       2        -1525 
       3        -1441 
       4        -1403 
       5        -1403 
Fixed bandwidth: 2597.255 AICc value: 4761.809 
bw.fixed
[1] 2599.672

The recommended maximum bandwidth for fixed distance matrix is 2599.672m.

gwlr.fixed <- ggwr.basic(fm,
                         data=wp_clean_sp,
                         bw = 2599.672,
                         family = "binomial",
                         kernel = "gaussian",
                         adaptive = FALSE,
                         longlat= FALSE)
 Iteration    Log-Likelihood
=========================
       0        -1958 
       1        -1676 
       2        -1526 
       3        -1443 
       4        -1405 
       5        -1405 
gwlr.fixed
   ***********************************************************************
   *                       Package   GWmodel                             *
   ***********************************************************************
   Program starts at: 2022-12-18 12:28:12 
   Call:
   ggwr.basic(formula = fm, data = wp_clean_sp, bw = 2599.672, family = "binomial", 
    kernel = "gaussian", adaptive = FALSE, longlat = FALSE)

   Dependent (y) variable:  status
   Independent variables:  distance_to_primary_road distance_to_secondary_road distance_to_tertiary_road distance_to_city distance_to_town water_point_population local_population_1km usage_capacity is_urban water_source_clean
   Number of data points: 4756
   Used family: binomial
   ***********************************************************************
   *              Results of Generalized linear Regression               *
   ***********************************************************************

Call:
NULL

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-124.555    -1.755     1.072     1.742    34.333  

Coefficients:
                                           Estimate Std. Error z value Pr(>|z|)
Intercept                                 3.887e-01  1.124e-01   3.459 0.000543
distance_to_primary_road                 -4.642e-06  6.490e-06  -0.715 0.474422
distance_to_secondary_road               -5.143e-06  9.299e-06  -0.553 0.580230
distance_to_tertiary_road                 9.683e-05  2.073e-05   4.671 3.00e-06
distance_to_city                         -1.686e-05  3.544e-06  -4.757 1.96e-06
distance_to_town                         -1.480e-05  3.009e-06  -4.917 8.79e-07
water_point_population                   -5.097e-04  4.484e-05 -11.369  < 2e-16
local_population_1km                      3.451e-04  1.788e-05  19.295  < 2e-16
usage_capacity1000                       -6.230e-01  6.972e-02  -8.937  < 2e-16
is_urbanTRUE                             -2.971e-01  8.185e-02  -3.629 0.000284
water_source_cleanProtected Shallow Well  5.040e-01  8.574e-02   5.878 4.14e-09
water_source_cleanProtected Spring        1.288e+00  4.388e-01   2.936 0.003325
                                            
Intercept                                ***
distance_to_primary_road                    
distance_to_secondary_road                  
distance_to_tertiary_road                ***
distance_to_city                         ***
distance_to_town                         ***
water_point_population                   ***
local_population_1km                     ***
usage_capacity1000                       ***
is_urbanTRUE                             ***
water_source_cleanProtected Shallow Well ***
water_source_cleanProtected Spring       ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 6534.5  on 4755  degrees of freedom
Residual deviance: 5688.0  on 4744  degrees of freedom
AIC: 5712

Number of Fisher Scoring iterations: 5


 AICc:  5712.099
 Pseudo R-square value:  0.1295351
   ***********************************************************************
   *          Results of Geographically Weighted Regression              *
   ***********************************************************************

   *********************Model calibration information*********************
   Kernel function: gaussian 
   Fixed bandwidth: 2599.672 
   Regression points: the same locations as observations are used.
   Distance metric: A distance matrix is specified for this model calibration.

   ************Summary of Generalized GWR coefficient estimates:**********
                                                   Min.     1st Qu.      Median
   Intercept                                -8.7229e+02 -4.9955e+00  1.7600e+00
   distance_to_primary_road                 -1.9389e-02 -4.8031e-04  2.9618e-05
   distance_to_secondary_road               -1.5921e-02 -3.7551e-04  1.2317e-04
   distance_to_tertiary_road                -1.5618e-02 -4.2368e-04  7.6179e-05
   distance_to_city                         -1.8416e-02 -5.6217e-04 -1.2726e-04
   distance_to_town                         -2.2411e-02 -5.7283e-04 -1.5155e-04
   water_point_population                   -5.2208e-02 -2.2767e-03 -9.8875e-04
   local_population_1km                     -1.2698e-01  4.9952e-04  1.0638e-03
   usage_capacity1000                       -2.0772e+01 -9.7231e-01 -4.1592e-01
   is_urbanTRUE                             -1.9790e+02 -4.2908e+00 -1.6864e+00
   water_source_cleanProtected.Shallow.Well -2.0789e+01 -4.5190e-01  5.3340e-01
   water_source_cleanProtected.Spring       -5.2235e+02 -5.5977e+00  2.5441e+00
                                                3rd Qu.      Max.
   Intercept                                 1.2763e+01 1073.2156
   distance_to_primary_road                  4.8443e-04    0.0142
   distance_to_secondary_road                6.0692e-04    0.0258
   distance_to_tertiary_road                 6.6815e-04    0.0128
   distance_to_city                          2.3718e-04    0.0150
   distance_to_town                          1.9271e-04    0.0224
   water_point_population                    5.0102e-04    0.1309
   local_population_1km                      1.8157e-03    0.0392
   usage_capacity1000                        3.0322e-01    5.9281
   is_urbanTRUE                              1.2841e+00  744.3099
   water_source_cleanProtected.Shallow.Well  1.7849e+00   67.6343
   water_source_cleanProtected.Spring        6.7663e+00  317.4133
   ************************Diagnostic information*************************
   Number of data points: 4756 
   GW Deviance: 2795.084 
   AIC : 4414.606 
   AICc : 4747.423 
   Pseudo R-square value:  0.5722559 

   ***********************************************************************
   Program stops at: 2022-12-18 12:32:20 

In order to assess the performance of the GWLR, we need to extract the output into a dataframe.

gwr.fixed <- as.data.frame(gwlr.fixed$SDF)

We manually compute the predicted waterpoint status from the probability that the waterpoint is functional (yhat) using the threshold of 0.5 again.

gwr.fixed <- gwr.fixed %>%
  mutate(most = ifelse(
    yhat >= 0.5, T, F
  ))

The following code chunk creates a confusion matrix by comparing the actual outcome with the predicted likely outcome.

gwr.fixed$y <- as.factor(gwr.fixed$y)
gwr.fixed$most <- as.factor(gwr.fixed$most)

CM <- confusionMatrix(data=gwr.fixed$most, 
                      positive= "TRUE",
                      reference = gwr.fixed$y)
CM
Confusion Matrix and Statistics

          Reference
Prediction FALSE TRUE
     FALSE  1824  263
     TRUE    290 2379
                                          
               Accuracy : 0.8837          
                 95% CI : (0.8743, 0.8927)
    No Information Rate : 0.5555          
    P-Value [Acc > NIR] : <2e-16          
                                          
                  Kappa : 0.7642          
                                          
 Mcnemar's Test P-Value : 0.2689          
                                          
            Sensitivity : 0.9005          
            Specificity : 0.8628          
         Pos Pred Value : 0.8913          
         Neg Pred Value : 0.8740          
             Prevalence : 0.5555          
         Detection Rate : 0.5002          
   Detection Prevalence : 0.5612          
      Balanced Accuracy : 0.8816          
                                          
       'Positive' Class : TRUE            
                                          

We can plot the predicted outcome spatially by extracting the sdf output from the model as an sf object.

gwr.fixed.sf <- st_as_sf(gwlr.fixed$SDF)
estprob <- tm_shape(osun)+
  tm_polygons(alpha=0.1)+
  tm_text(text="ADM2_EN")+
  tm_shape(gwr.fixed.sf) +
  tm_dots(col="yhat",
          border.col = "gray60",
          border.lwd = 1, 
          palette = "YlOrRd") +
  tm_view(set.zoom.limits = c(9, 12))

actual <- tm_shape(osun)+
  tm_polygons(alpha=0.1)+
  tm_text(text="ADM2_EN")+
  tm_shape(gwr.fixed.sf) +
  tm_dots(col="y",
          border.col = "gray60",
          border.lwd = 1,
          palette = c("#FFFFB2", "#BD0026")) +
  tm_view(set.zoom.limits = c(9, 12))

tmap_arrange(actual, estprob,
           asp=1, ncol=2,
           sync = TRUE)

Refining the Model

We can further refine the model by removing the variables (distance_to_primary_road, distance_to_secondary_road ) that we previously identified as not statistically significant. To do that, we create a new formula without those variables. We then need to find the recommended fixed bandwidth for the formula.

fm2 <- as.formula(paste("status ~", 
                       paste(expvars[4:11], collapse="+")))

bw.fixed <- bw.ggwr(fm2, 
                    data=wp_clean_sp,
                    family = "binomial",
                    approach= "AIC",
                    kernel = "gaussian",
                    adaptive = FALSE,
                    longlat= FALSE)
Take a cup of tea and have a break, it will take a few minutes.
          -----A kind suggestion from GWmodel development group
 Iteration    Log-Likelihood:(With bandwidth:  95768.67 )
=========================
       0        -2890 
       1        -2837 
       2        -2830 
       3        -2829 
       4        -2829 
       5        -2829 
Fixed bandwidth: 95768.67 AICc value: 5681.18 
 Iteration    Log-Likelihood:(With bandwidth:  59200.13 )
=========================
       0        -2878 
       1        -2820 
       2        -2812 
       3        -2810 
       4        -2810 
       5        -2810 
Fixed bandwidth: 59200.13 AICc value: 5645.901 
 Iteration    Log-Likelihood:(With bandwidth:  36599.53 )
=========================
       0        -2854 
       1        -2790 
       2        -2777 
       3        -2774 
       4        -2774 
       5        -2774 
       6        -2774 
Fixed bandwidth: 36599.53 AICc value: 5585.354 
 Iteration    Log-Likelihood:(With bandwidth:  22631.59 )
=========================
       0        -2810 
       1        -2732 
       2        -2711 
       3        -2707 
       4        -2707 
       5        -2707 
       6        -2707 
Fixed bandwidth: 22631.59 AICc value: 5481.877 
 Iteration    Log-Likelihood:(With bandwidth:  13998.93 )
=========================
       0        -2732 
       1        -2635 
       2        -2604 
       3        -2597 
       4        -2596 
       5        -2596 
       6        -2596 
Fixed bandwidth: 13998.93 AICc value: 5333.718 
 Iteration    Log-Likelihood:(With bandwidth:  8663.649 )
=========================
       0        -2624 
       1        -2502 
       2        -2459 
       3        -2447 
       4        -2446 
       5        -2446 
       6        -2446 
       7        -2446 
Fixed bandwidth: 8663.649 AICc value: 5178.493 
 Iteration    Log-Likelihood:(With bandwidth:  5366.266 )
=========================
       0        -2478 
       1        -2319 
       2        -2250 
       3        -2225 
       4        -2219 
       5        -2219 
       6        -2220 
       7        -2220 
       8        -2220 
       9        -2220 
Fixed bandwidth: 5366.266 AICc value: 5022.016 
 Iteration    Log-Likelihood:(With bandwidth:  3328.371 )
=========================
       0        -2222 
       1        -2002 
       2        -1894 
       3        -1838 
       4        -1818 
       5        -1814 
       6        -1814 
Fixed bandwidth: 3328.371 AICc value: 4827.587 
 Iteration    Log-Likelihood:(With bandwidth:  2068.882 )
=========================
       0        -1837 
       1        -1528 
       2        -1357 
       3        -1261 
       4        -1222 
       5        -1222 
Fixed bandwidth: 2068.882 AICc value: 4772.046 
 Iteration    Log-Likelihood:(With bandwidth:  1290.476 )
=========================
       0        -1403 
       1        -1016 
       2       -807.3 
       3       -680.2 
       4       -680.2 
Fixed bandwidth: 1290.476 AICc value: 5809.721 
 Iteration    Log-Likelihood:(With bandwidth:  2549.964 )
=========================
       0        -2019 
       1        -1753 
       2        -1614 
       3        -1538 
       4        -1506 
       5        -1506 
Fixed bandwidth: 2549.964 AICc value: 4764.056 
 Iteration    Log-Likelihood:(With bandwidth:  2847.289 )
=========================
       0        -2108 
       1        -1862 
       2        -1736 
       3        -1670 
       4        -1644 
       5        -1644 
Fixed bandwidth: 2847.289 AICc value: 4791.834 
 Iteration    Log-Likelihood:(With bandwidth:  2366.207 )
=========================
       0        -1955 
       1        -1675 
       2        -1525 
       3        -1441 
       4        -1407 
       5        -1407 
Fixed bandwidth: 2366.207 AICc value: 4755.524 
 Iteration    Log-Likelihood:(With bandwidth:  2252.639 )
=========================
       0        -1913 
       1        -1623 
       2        -1465 
       3        -1376 
       4        -1341 
       5        -1341 
Fixed bandwidth: 2252.639 AICc value: 4759.188 
 Iteration    Log-Likelihood:(With bandwidth:  2436.396 )
=========================
       0        -1980 
       1        -1706 
       2        -1560 
       3        -1479 
       4        -1446 
       5        -1446 
Fixed bandwidth: 2436.396 AICc value: 4756.675 
 Iteration    Log-Likelihood:(With bandwidth:  2322.828 )
=========================
       0        -1940 
       1        -1656 
       2        -1503 
       3        -1417 
       4        -1382 
       5        -1382 
Fixed bandwidth: 2322.828 AICc value: 4756.471 
 Iteration    Log-Likelihood:(With bandwidth:  2393.017 )
=========================
       0        -1965 
       1        -1687 
       2        -1539 
       3        -1456 
       4        -1422 
       5        -1422 
Fixed bandwidth: 2393.017 AICc value: 4755.57 
 Iteration    Log-Likelihood:(With bandwidth:  2349.638 )
=========================
       0        -1949 
       1        -1668 
       2        -1517 
       3        -1432 
       4        -1398 
       5        -1398 
Fixed bandwidth: 2349.638 AICc value: 4755.753 
 Iteration    Log-Likelihood:(With bandwidth:  2376.448 )
=========================
       0        -1959 
       1        -1680 
       2        -1530 
       3        -1447 
       4        -1413 
       5        -1413 
Fixed bandwidth: 2376.448 AICc value: 4755.48 
 Iteration    Log-Likelihood:(With bandwidth:  2382.777 )
=========================
       0        -1961 
       1        -1683 
       2        -1534 
       3        -1450 
       4        -1416 
       5        -1416 
Fixed bandwidth: 2382.777 AICc value: 4755.491 
 Iteration    Log-Likelihood:(With bandwidth:  2372.536 )
=========================
       0        -1958 
       1        -1678 
       2        -1528 
       3        -1445 
       4        -1411 
       5        -1411 
Fixed bandwidth: 2372.536 AICc value: 4755.488 
 Iteration    Log-Likelihood:(With bandwidth:  2378.865 )
=========================
       0        -1960 
       1        -1681 
       2        -1532 
       3        -1448 
       4        -1414 
       5        -1414 
Fixed bandwidth: 2378.865 AICc value: 4755.481 
 Iteration    Log-Likelihood:(With bandwidth:  2374.954 )
=========================
       0        -1959 
       1        -1679 
       2        -1530 
       3        -1446 
       4        -1412 
       5        -1412 
Fixed bandwidth: 2374.954 AICc value: 4755.482 
 Iteration    Log-Likelihood:(With bandwidth:  2377.371 )
=========================
       0        -1959 
       1        -1680 
       2        -1531 
       3        -1447 
       4        -1413 
       5        -1413 
Fixed bandwidth: 2377.371 AICc value: 4755.48 
 Iteration    Log-Likelihood:(With bandwidth:  2377.942 )
=========================
       0        -1960 
       1        -1680 
       2        -1531 
       3        -1448 
       4        -1414 
       5        -1414 
Fixed bandwidth: 2377.942 AICc value: 4755.48 
 Iteration    Log-Likelihood:(With bandwidth:  2377.018 )
=========================
       0        -1959 
       1        -1680 
       2        -1531 
       3        -1447 
       4        -1413 
       5        -1413 
Fixed bandwidth: 2377.018 AICc value: 4755.48 
bw.fixed
[1] 2377.371
gwlr2.fixed <- ggwr.basic(fm2,
                         data=wp_clean_sp,
                         bw = 2377.371,
                         family = "binomial",
                         kernel = "gaussian",
                         adaptive = FALSE,
                         longlat= FALSE)
 Iteration    Log-Likelihood
=========================
       0        -1959 
       1        -1680 
       2        -1531 
       3        -1447 
       4        -1413 
       5        -1413 
gwlr2.fixed
   ***********************************************************************
   *                       Package   GWmodel                             *
   ***********************************************************************
   Program starts at: 2022-12-18 13:46:51 
   Call:
   ggwr.basic(formula = fm2, data = wp_clean_sp, bw = 2377.371, 
    family = "binomial", kernel = "gaussian", adaptive = FALSE, 
    longlat = FALSE)

   Dependent (y) variable:  status
   Independent variables:  distance_to_tertiary_road distance_to_city distance_to_town water_point_population local_population_1km usage_capacity is_urban water_source_clean
   Number of data points: 4756
   Used family: binomial
   ***********************************************************************
   *              Results of Generalized linear Regression               *
   ***********************************************************************

Call:
NULL

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-129.368    -1.750     1.074     1.742    34.126  

Coefficients:
                                           Estimate Std. Error z value Pr(>|z|)
Intercept                                 3.540e-01  1.055e-01   3.354 0.000796
distance_to_tertiary_road                 1.001e-04  2.040e-05   4.910 9.13e-07
distance_to_city                         -1.764e-05  3.391e-06  -5.202 1.97e-07
distance_to_town                         -1.544e-05  2.825e-06  -5.466 4.60e-08
water_point_population                   -5.098e-04  4.476e-05 -11.390  < 2e-16
local_population_1km                      3.452e-04  1.779e-05  19.407  < 2e-16
usage_capacity1000                       -6.206e-01  6.966e-02  -8.908  < 2e-16
is_urbanTRUE                             -2.667e-01  7.474e-02  -3.569 0.000358
water_source_cleanProtected Shallow Well  4.947e-01  8.496e-02   5.823 5.79e-09
water_source_cleanProtected Spring        1.279e+00  4.384e-01   2.917 0.003530
                                            
Intercept                                ***
distance_to_tertiary_road                ***
distance_to_city                         ***
distance_to_town                         ***
water_point_population                   ***
local_population_1km                     ***
usage_capacity1000                       ***
is_urbanTRUE                             ***
water_source_cleanProtected Shallow Well ***
water_source_cleanProtected Spring       ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 6534.5  on 4755  degrees of freedom
Residual deviance: 5688.9  on 4746  degrees of freedom
AIC: 5708.9

Number of Fisher Scoring iterations: 5


 AICc:  5708.923
 Pseudo R-square value:  0.129406
   ***********************************************************************
   *          Results of Geographically Weighted Regression              *
   ***********************************************************************

   *********************Model calibration information*********************
   Kernel function: gaussian 
   Fixed bandwidth: 2377.371 
   Regression points: the same locations as observations are used.
   Distance metric: A distance matrix is specified for this model calibration.

   ************Summary of Generalized GWR coefficient estimates:**********
                                                   Min.     1st Qu.      Median
   Intercept                                -3.7021e+02 -4.3797e+00  3.5590e+00
   distance_to_tertiary_road                -3.1622e-02 -4.5462e-04  9.1291e-05
   distance_to_city                         -5.4555e-02 -6.5623e-04 -1.3507e-04
   distance_to_town                         -8.6549e-03 -5.2754e-04 -1.6785e-04
   water_point_population                   -2.9696e-02 -2.2705e-03 -1.2277e-03
   local_population_1km                     -7.7730e-02  4.4281e-04  1.0548e-03
   usage_capacity1000                       -5.5889e+01 -1.0347e+00 -4.1960e-01
   is_urbanTRUE                             -7.3554e+02 -3.4675e+00 -1.6596e+00
   water_source_cleanProtected.Shallow.Well -1.8842e+02 -4.7295e-01  6.2378e-01
   water_source_cleanProtected.Spring       -1.3630e+03 -5.3436e+00  2.7714e+00
                                                3rd Qu.      Max.
   Intercept                                 1.3755e+01 2171.6375
   distance_to_tertiary_road                 6.3011e-04    0.0237
   distance_to_city                          1.5921e-04    0.0162
   distance_to_town                          2.4490e-04    0.0179
   water_point_population                    4.5879e-04    0.0765
   local_population_1km                      1.8479e-03    0.0333
   usage_capacity1000                        3.9113e-01    9.2449
   is_urbanTRUE                              1.0554e+00  995.1841
   water_source_cleanProtected.Shallow.Well  1.9564e+00   66.8914
   water_source_cleanProtected.Spring        7.0805e+00  208.3749
   ************************Diagnostic information*************************
   Number of data points: 4756 
   GW Deviance: 2815.659 
   AIC : 4418.776 
   AICc : 4744.213 
   Pseudo R-square value:  0.5691072 

   ***********************************************************************
   Program stops at: 2022-12-18 13:49:55 

We should also compare the confusion matrix of the new local model with the first local model.

gwr2.fixed <- as.data.frame(gwlr2.fixed$SDF) %>%
  mutate(most = as.factor(
    ifelse(
      yhat >= 0.5, T, F)),
    y = as.factor(y)
  )
CM
Confusion Matrix and Statistics

          Reference
Prediction FALSE TRUE
     FALSE  1824  263
     TRUE    290 2379
                                          
               Accuracy : 0.8837          
                 95% CI : (0.8743, 0.8927)
    No Information Rate : 0.5555          
    P-Value [Acc > NIR] : <2e-16          
                                          
                  Kappa : 0.7642          
                                          
 Mcnemar's Test P-Value : 0.2689          
                                          
            Sensitivity : 0.9005          
            Specificity : 0.8628          
         Pos Pred Value : 0.8913          
         Neg Pred Value : 0.8740          
             Prevalence : 0.5555          
         Detection Rate : 0.5002          
   Detection Prevalence : 0.5612          
      Balanced Accuracy : 0.8816          
                                          
       'Positive' Class : TRUE            
                                          
CM2 <- confusionMatrix(data=gwr2.fixed$most, 
                       positive = "TRUE",
                      reference = gwr2.fixed$y)
CM2
Confusion Matrix and Statistics

          Reference
Prediction FALSE TRUE
     FALSE  1833  268
     TRUE    281 2374
                                          
               Accuracy : 0.8846          
                 95% CI : (0.8751, 0.8935)
    No Information Rate : 0.5555          
    P-Value [Acc > NIR] : <2e-16          
                                          
                  Kappa : 0.7661          
                                          
 Mcnemar's Test P-Value : 0.6085          
                                          
            Sensitivity : 0.8986          
            Specificity : 0.8671          
         Pos Pred Value : 0.8942          
         Neg Pred Value : 0.8724          
             Prevalence : 0.5555          
         Detection Rate : 0.4992          
   Detection Prevalence : 0.5582          
      Balanced Accuracy : 0.8828          
                                          
       'Positive' Class : TRUE            
                                          
gwr2.fixed <- gwr2.fixed %>%
  mutate(most2 = as.factor(
    ifelse(
      yhat >= 0.6, T, F))
  )

CM3 <- confusionMatrix(data=gwr2.fixed$most2, 
                       positive = "TRUE",
                      reference = gwr2.fixed$y)
CM3
Confusion Matrix and Statistics

          Reference
Prediction FALSE TRUE
     FALSE  1976  472
     TRUE    138 2170
                                          
               Accuracy : 0.8717          
                 95% CI : (0.8619, 0.8811)
    No Information Rate : 0.5555          
    P-Value [Acc > NIR] : < 2.2e-16       
                                          
                  Kappa : 0.7443          
                                          
 Mcnemar's Test P-Value : < 2.2e-16       
                                          
            Sensitivity : 0.8213          
            Specificity : 0.9347          
         Pos Pred Value : 0.9402          
         Neg Pred Value : 0.8072          
             Prevalence : 0.5555          
         Detection Rate : 0.4563          
   Detection Prevalence : 0.4853          
      Balanced Accuracy : 0.8780          
                                          
       'Positive' Class : TRUE            
                                          

Now, let’s plot the predicted results of the second model spatially.

gwr2.fixed.sf <- st_as_sf(gwlr2.fixed$SDF) 
estprob <- tm_shape(osun)+
  tm_polygons(alpha=0.1)+
  tm_text(text="ADM2_EN")+
  tm_shape(gwr2.fixed.sf) +
  tm_dots(col="yhat",
          border.col = "gray60",
          border.lwd = 1, 
          palette = "YlOrRd") +
  tm_view(set.zoom.limits = c(9, 12))

tmap_arrange(actual, estprob,
           asp=1, ncol=2,
           sync = TRUE)

We should also directly compare the prediction result with the actual. The code chunk below adds the prediction results based on the 0.6 threshold level. We also add indicators for false negatives and false positives to see if the misclassifications show spatial depedency.

gwr2.fixed.sf <- gwr2.fixed.sf%>%
  mutate(thres0.6 = as.factor(
    ifelse(yhat >= 0.6, T, F)),
    y = as.factor(y),
    FP = ifelse(thres0.6==T & y==F, T, F),
    FN = ifelse(thres0.6==F & y==T, T, F)
  )
pred0.6 <- tm_shape(osun)+
  tm_polygons(alpha=0.1)+
  tm_text(text="ADM2_EN")+
  tm_shape(gwr2.fixed.sf) +
  tm_dots(col="thres0.6",
          border.col = "gray60",
          border.lwd = 1, 
          palette = c("#FFFFB2", "#BD0026")) +
  tm_view(set.zoom.limits = c(9, 12))

FN <- tm_shape(osun)+
  tm_polygons(alpha=0.1)+
  tm_text(text="ADM2_EN")+
  tm_shape(filter(gwr2.fixed.sf, FN==T)) +
  tm_dots(col="FN",
          border.col = "gray60",
          border.lwd = 1,
          palette = c("#FFFFFF", "#000000")) +
  tm_view(set.zoom.limits = c(9, 12))

FP <- tm_shape(osun)+
  tm_polygons(alpha=0.1)+
  tm_text(text="ADM2_EN")+
  tm_shape(filter(gwr2.fixed.sf, FP==T)) +
  tm_dots(col="FP",
          border.col = "gray60",
          border.lwd = 1,
          palette = c("#FFFFFF", "#000000")) +
  tm_view(set.zoom.limits = c(9, 12))


tmap_arrange(actual, pred0.6, FP, FN,
           asp=1, ncol=2,
           sync = TRUE)